Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 2(7): 2822-2832, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030816

RESUMO

The most common treatment for osteoarthritis is daily oral administration of a nonsteroidal anti-inflammatory drug such as diclofenac. This daily dosage regime is often associated with severe side effects. In this study, we explored the potential of utilizing a high molecular weight cross-linked polyurethane polymer covalently linked to diclofenac (C-DCF-PU) for intra-articular administration. We aim to exploit the advantages of local drug delivery by developing an implant with improved efficacy and reduced side effects. The polymer was synthesized from a diclofenac-functionalized monomer unit in a simple one-pot reaction, followed by cross-linking. In vitro drug release studies showed zero-order drug release for 4 days, followed by a gradual decline in drug release rate until diclofenac was depleted after 15 days. The cross-linked polymer was triturated to yield an injectable microgel formulation for administration. Whole animal fluorescence imaging of the rhodamine-labeled C-DCF-RH-PU showed good retention of the polymer in the knee joints of healthy rats, with approximately 30% of the injected dose still present 2 weeks post intra-articular administration. In a reactivation arthritis animal model, the C-DCF-RH-PU formulation reduced pain and significantly reduced inflammation after a short lag phase, showing that this drug delivery system warrants further development for long-term treatment of osteoarthritis with the benefit of reduced side effects.

2.
J Mater Chem B ; 5(31): 6221-6226, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32264436

RESUMO

A facile synthesis method of polymer diclofenac conjugates (PDCs) based on biocompatible polyurethane chemistry that provides a high drug loading and offers a high degree of control over diclofenac (DCF) release kinetics is described. DCF incorporating monomer was reacted with ethyl-l-lysine diisocyanate (ELDI) and different amounts of polyethylene glycol (PEG) in a one-step synthesis to yield polymers with pendent diclofenac distributed along the backbone. By adjusting the co-monomers feed ratio, the drug loading could be tailored accordingly to give DCF loading of up to 38 w/w%. The release rate could also be controlled easily by changing the amount of PEG in the backbone. Above 10 w/w% of PEG, the in vitro DCF release studies in physiological conditions showed an apparent zero-order profile without an initial burst effect for up to 120 days. The PDCs described may be suitable for long-term intra-articular (IA) delivery for the treatment of osteoarthritis (OA).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...